Identification of abnormal gene expression in bovine transgenic somatic cell nuclear transfer embryos
نویسندگان
چکیده
This study was conducted to investigate the expression of three genes related to early embryonic development in bovine transgenic cloned embryos. To accomplish this, development of bovine transgenic somatic cell nuclear transfer (SCNT) embryos was compared with non-transgenic embryos. Next, mRNA transcription of three specific genes (DNMT1, Hsp 70.1, and Mash2) related to early embryo development in transgenic SCNT embryos was compared between transgenic and non-transgenic SCNTs, parthenogenetic embryos, and in vitro fertilization (IVF) embryos. Transgenic SCNT embryos showed significantly lower rates of development to the blastocyst stage than non-transgenic ones. To investigate normal gene expression, RNA was extracted from ten blastocysts derived from parthenogenesis, IVF, non-transgenic, and transgenic SCNT embryos and reverse-transcribed to synthesize cDNA. The cDNA was then subjected to PCR amplification and semi-quantified. More DNMT1 mRNA was detected in the transgenic SCNT group than the other three groups. Hsp 70.1 mRNA was detected in the IVF embryos, while lower levels were found in SCNT and parthenogenetic embryos. Mash2 mRNA was present at the highest levels in transgenic SCNT embryos. In conclusion, the higher levels of methylation and lower protein synthesis after heat shock in the transgenic SCNT embryos expected based on our results may cause lower embryonic development.
منابع مشابه
I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer
Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...
متن کاملO-7: Improved In Vitro Development of Cloned Bovine Embryos Using S-Adenosylhomocysteine,A Non-Toxic Epigenetic
Background: Development of cloned bovine embryos. Materials and Methods: Oocytes collection,oocyte denudation, oocyte enucleation, nuclear transfer, electrofusion, reconstructed embryo activation, culture of reconstructed and IVF embryo,and treatment with SAH post fusion interval Treatment of reconstructed embryos with TSA for 12 hours after activation, preparation of somatic donor cells, donor...
متن کاملP-115: Melatonin Increases Developmental Rate of In Vitro Mouse Somatic Cell Nuclear
Background: The beneficial effect of supplementing culture medium with melatonin has been reported during in vitro embryo development of species such as mouse, bovine and porcine. However, the effect of melatonin on the mouse somatic cell nuclear transfer remained unknown. Materials and Methods: In this study, we assessed the effects of various concentrations of melatonin (10-6 to 10-12 M) on t...
متن کاملO-18: Epigenetic Modification of Cloned Embryo Development; State of ART
Background: At the outset of the somatic cell nuclear transfer (SCNT) process, the chromatin structure of the somatic cell which governs its state of differentiation undergoes dramatic changes, called reprogramming, and is compelled back to the embryonic stage. However, the overall epigenetic makeup of the resultant cloned embryos has been acknowledged far different from the fertilized embryos....
متن کاملPhiC31-based Site-Specific Transgenesis System for Production of Transgenic Bovine Embryos by Somatic Cell Nuclear Transfer and Intracytoplasmic Sperm Injection
OBJECTIVES The Streptomyces phage phiC31 integrase offers a sequence-specific method of transgenesis with a robust long-term gene expression. PhiC31 has been successfully developed in a variety of tissues and organs for purpose of in vivo gene therapy. The objective of the present experiment was to evaluate PhiC31-based site-specific transgenesis system for production of transgenic bovine embry...
متن کامل